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The theory governing the torque-free motion of a rigid body is well established, yet direct
experimental measurement in the laboratory remains an obvious challenge. This paper
addresses this challenge by presenting a novel miniature wireless inertial measurement
unit (IMU) that directly measures the motion of a rigid body during free-flight. The IMU
incorporates three-axis sensing of acceleration and three-axis sensing of angular velocity
with a microcontroller and an RF transceiver for wireless data transmission to a host
computer. Experiments consider a rigid body that is spun up by hand and then released
into free-flight. The measured rotational dynamics from the IMU are carefully bench-
marked against theoretical predictions. This benchmarking reveals that the angular
velocity directly measured by the angular rate gyros lies within 6% of that predicted by
the (Jacobi elliptic function) solutions to the Euler equations. Moreover, experimentally
constructed polhodes elegantly illustrate the expected stable precession for rotations ini-
tiated close to the major or minor principal axes and the unstable precession for rotations
initiated close to the intermediate axis. We then present a “gyro-free” design that
employs a single, triaxial accelerometer to reconstruct the angular velocity during free-
flight. A measurement theory is presented and validated experimentally. Results confirm
that the angular velocity can be reconstructed with exceedingly small errors (less than
2%) when benchmarked against direct measurements using angular rate gyros. The sim-
pler gyro-free design addresses restrictions imposed by rate gyro cost, size, and measure-
ment range and may enable high-volume commercial applications of this technology in
instrumented baseballs, basketballs, golf balls, footballs, soccer balls, softballs, and the
like. [DOI: 10.1115/1.4006162]

1 Introduction

The theory governing the torque-free motion of a rigid body is
a classical topic in rigid body dynamics; see for example, [1–3].
Under torque-free conditions, the solution to Euler’s equations for
the angular velocity, expressible by Jacobi elliptic functions, satis-
fies two first integrals; namely constant rotational kinetic energy
and constant magnitude of angular momentum. Rotations initiated
close to the major or the minor principal axis generates a stable
periodic precession about those axes. By contrast, unstable preces-
sion results from rotations initiated close to the intermediate axis.
These results are elegantly revealed using the geometrical con-
struction due to Poinsot [1–4], which considers the rolling without
slipping of the inertia ellipsoid on the invariable plane. The path
traced on the inertia ellipsoid by its contact point on the invariant
plane, referred to as the polhode, describes the precession of the
angular velocity vector in a body-fixed frame. The polhode may
also be constructed from the intersection of the rotational kinetic
energy ellipsoid and the angular momentum ellipsoid in angular
velocity space [5]. This latter method will be demonstrated experi-
mentally later in this paper.

In contrast to the well-established theory, direct experimental
measurements of the dynamics of rigid bodies during torque-free or
“free-flight” motion remain scarce. This is not surprising given the
significant experimental challenges in measuring free-flight dynam-
ics in the laboratory in a noninvasive manner. One means to accom-
plish this is through camera-based motion analysis as used; for
example, in optical motion tracking; see [6–13]. Bhat et al. [12]

deduce the motion of a rigid body using single-camera optical
motion tracking paired with global optimization techniques to mini-
mize the error between video- and simulation-derived silhouettes.
The algorithm, designed to converge to optimum values for initial
position, orientation, velocity, and angular velocity, is especially
sensitive to initial guesses due to many local minima in the error
space. A variant of camera-based measurement introduced by
Masutani et al. [13] estimates the free rotational motion of a rigid
body from a sequence of grayscale or distance images. This
method, which relies heavily on the aforementioned closed-form
solutions to Euler’s equations, was evaluated using simulated
motions in lieu of experiments. Fundamentally, camera-based
motion analysis begins with noisy position data that must be differ-
entiated numerous times to yield velocity, angular velocity, acceler-
ation, and angular acceleration data for the purpose of comparing
with the equations of rigid body motion. The successive differentia-
tion of real (i.e., noisy) position data leads to noise amplification
and yields potentially error-prone comparisons with theory. Addi-
tionally, to avoid problems with aliasing, a camera must also cap-
ture images (and without occlusions) at frame rates well in excess
of the angular velocity of the rigid body. These challenges funda-
mentally limit the utility of camera-based methods for analyzing
the dynamics of a rigid body.

The use of MEMS inertial sensors to directly measure rigid
body dynamics presents an attractive alternative to camera-based
motion detection. Inertial sensors, consisting of accelerometers
and angular rate gyros, directly measure the kinematic quantities
governed by the Newton-Euler differential equations of motion.
As one example, Lorenz [14] investigated the flight and attitude
dynamics of a Frisbee TM using a body-fixed instrumentation
package containing two dual-axis MEMS accelerometers (among
other sensors) to deduce the aerodynamic coefficients of the disk.
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Of keen interest in free-flight dynamics is the rotation of the rigid
body as manifested in the angular velocity. Extending the mea-
surement design in [14] to include three-axis angular rate sensing
as well as three-axis acceleration sensing requires a complete iner-
tial measurement unit (IMU) for measuring the six degrees of
freedom (6 dof) of a rigid body; see for example, [15]. However,
the added cost and the limited dynamic range and resolution of
MEMS rate gyros have motivated numerous alternative “gyro-
free” IMUs for deducing the 6 dof [16–21]. The consensus is that
12 uniaxial accelerometers are required to form an overdeter-
mined set of acceleration data for the robust reconstruction of the
angular velocity of a rigid body [16,17]. Special configurations of
nine [18,19] and even six [20,21] uniaxial accelerometers can also
succeed. Following [17] and [21], the optimal configuration of the
6, 9, and 12 uniaxial accelerometers places them on the faces and/
or the corners of a cube. The accuracy of the reconstructed angu-
lar velocity increases with cube dimension leading to dimension-
ally large, and thereby potentially invasive, sensor arrays. A
significantly more compact solution follows from collocating
angular rate gyros and accelerometers as achieved in the highly
miniaturized IMU described herein.

In this paper we contribute an elegant experimental method that
reveals the free-flight dynamics of a rigid body. At the heart of our
method is a highly miniaturized wireless IMU that incorporates
three-axis sensing of acceleration and three-axis sensing of angular
velocity with a microcontroller and a low-power RF transceiver for
wireless data transmission to a host computer. This IMU is used to
directly measure acceleration and angular velocity during free-
flight of a rigid body for comparison with theory. We directly
observe the precession of the angular velocity vector in a body
fixed frame through the construction of experimental polhodes.
Rotations initiated close to the major, minor, and intermediate prin-
cipal axes closely obey predictions from classical theory. This ex-
perimental verification of classical free-flight dynamics enables us
to demonstrate that the angular velocity vector of a body in force-
and torque-free flight can be reconstructed via measurements from
a single, triaxial accelerometer. This simplification, which provides
an inexpensive alternative to using angular rate gyros, runs counter
to prior claims that a minimum of six independent accelerometer
outputs are required for this purpose [20,21]. We open next with a
description of the wireless IMU and the experimental procedure.

2 Methods

2.1 Wireless IMU and Experimental Procedure. Figure 1
illustrates what is believed to be the world’s smallest wireless
IMU enabling peer-to-peer communication to a host computer.
This single-board design follows a lineage of larger, multiboard
IMU designs [22–25] developed recently for novel sports training
systems [26].

The two faces of the design separate analog and digital circuits.
The MEMS inertial sensors, mounted on the analog circuit side
[Fig. 1(a)], include a three-axis accelerometer, one dual-axis, and
one single-axis angular rate gyro, op-amps for signal conditioning,
and off-chip components for filtering. The digital circuit side
[Fig. 1(b)] includes a microprocessor for AD conversion, a low
power RF transceiver, and a small surface mount antenna. Also
visible are two small connectors (white, lower right) that provide
battery connection and the (one-time) connection to a host com-
puter for uploading the firmware program to the microprocessor.

The minimized footprint (0.019� 0.024 m) is achieved using a
six-layer board containing two internal planes for interconnects and
separate planes for power and ground. The assembled IMU board
has a mass of 0.003 kg and the associated miniature lithium-ion bat-
tery adds a mere 0.0015 kg. The power draw remains below 25
mW and the battery tank yields 4 h of uninterrupted use between
recharging. The microprocessor performs 12-bit A/D conversion
and, with the current firmware, provides 1 kHz sampling of all sen-
sor channels. The low power RF transceiver (Nordic nRF24LE1)
uses a proprietary RF protocol to transmit over a typical open-air
range of 5 m with up to 18 m being achieved in low ambient RF
environments. A USB-enabled receiver (not shown) enables data
collection on a host (laptop) computer via custom data collection
software. The device measurement range (and noise floor) includes

accelerations up to 18 g (0.1 mg
� ffiffiffiffiffiffi

Hz
p

) and angular rates up

to 2000 deg/s (0.06 deg s�1
� ffiffiffiffiffiffi

Hz
p

) with an overall measurement

bandwidth of 400 Hz. The calibration procedure detailed in [22] is
used to determine 24 calibration parameters (including scale fac-
tors, cross-axis sensitivity scale factors, and biases) for the IMU.
This process ensures that the acceleration and angular rate measure-
ments are resolved along a common set of orthogonal sense axes.

This miniaturized IMU, which currently supports a wide range
of human movement studies at the University of Michigan (e.g.,
athlete training, gait analysis, vestibular ocular reflex, knee and
elbow injury detection, and surgeon training), is used herein to
experimentally analyze the dynamics of a rigid body during free-
flight. This class of motions is especially meaningful in the con-
text of sports equipment (e.g., basketballs, baseballs, footballs,
soccer balls, softballs, and the like) as well as aircraft, spacecraft,
and smart munitions, among other applications. The IMU above
enables the direct measurement of rigid-body dynamics in a non-
invasive (wireless) mode in laboratory or even classroom settings.

In our experiments, we seek to measure the rotational dynamics
of the example rigid body illustrated in Fig. 2. This body is a

Fig. 1 Photographs of highly miniaturized, wireless IMU. (a)
Analog circuit side with MEMS angular rate gyros and acceler-
ometer. (b) Digital circuit side with microprocessor, wireless
transceiver, surface mount antenna, and connectors for battery
power and firmware programming.

Fig. 2 Photograph of example rigid body employed in
experiments
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uniform block of plastic (DelrinTM) having dimensions
0.201� 0.147 � 0.102 m and a mass of 4.36 kg. The block has
readily computed (nondegenerate) principal moments of inertia.
The miniature IMU is fastened to the surface of the block in a cor-
ner position as shown. The mass of the IMU, when enclosed in a
protective plastic casing, is approximately 0.014 kg, which repre-
sents a mere 0.3% perturbation to the mass of the block. Within
this casing, the MEMS accelerometer is positioned at point P
which is located by the known position vector r

*

p=c relative to the
mass center C of the block. The illustrated body fixed frame
(ê1; ê2; ê3), located at C, is aligned with the principal axes of the
block as well as the sense axes of the accelerometer and angular
rate gyros of the IMU. In particular, the ê1 axis (or x1 axis), the ê2

axis (or x2 axis), and the ê3 axis (or x3 axis) is aligned with the
minor, intermediate, and major principal axes, respectively.

A simple experimental procedure is used to record the rigid
body dynamics of the block during free flight. We first select the
data sampling time (typically 5 s) via a custom data collection
application. Next, we initiate data collection and then launch the
block into free-flight by hand. In particular, we spin the block
largely about a preselected axis prior to releasing it into free-
flight. The IMU wirelessly transmits the acceleration data (for
point P) and the block angular velocity data before release, during
free-flight, and shortly after free-flight when the block is subse-
quently caught by hand.

2.2 Classical Analysis of Rigid Body Rotation During
Free-Flight. As our interest lies in measuring rigid body rotation
during free-flight, it is instructive to quickly review the classical
behaviors predicted by theory. Assuming negligible aerodynamic
moments, the angular momentum of the block about its center of
mass remains constant as governed by Euler’s equations under
torque-free conditions [4]:

0 ¼ IC
_x
* þ x

* � ICx
*

(1)

Here IC denotes the inertia tensor of the block about principal axes
through its center of mass, and x

*
denotes the angular velocity of

the block resolved into components along the same (body-fixed)
axes. Two constants of the motion arise (under the assumed torque-
free conditions), namely the rotational kinetic energy (T) and the
magnitude of the angular momentum ðkH

*

kÞ [4] as given by

2T ¼ x
* � H

*

¼ I1x
2
1 þ I2x

2
2 þ I3x

2
3 ¼ const: (2)

H2 ¼ H
*
��� ���2

¼ I1x1ð Þ2 þ I2x2ð Þ2 þ I3x3ð Þ2 ¼ const: (3)

where Iiand xi (for i¼ 1, 2, 3) denote the principal moments of
inertia and the angular velocity components, respectively.

The form of the solution to Eq. (1), as summarized in Table 1,
depends on the intermediate principal moment of inertia I2 and
the constants of the motion T and H; see for example [27] or [28].
In Table 1, additional constants are defined by

z1 ¼
H2 � 2TðI2 þ I3Þ

I2I3

; z2 ¼
H2 � 2TðI1 þ I3Þ

I1I3

;

z3 ¼
H2 � 2TðI1 þ I2Þ

I1I2

; si ¼ sign xið0Þ½ �
(4)

and cn, sn, and dn denote Jacobi elliptic functions. The constant t0
is evaluated by satisfying the initial conditions for x 0ð Þ.

In general, the rigid body will precess during free-flight and the
precession is stable for rotations initiated close to the major and
minor axes and unstable for rotations initiated close to the inter-
mediate axis. The precession and stability can also be observed
geometrically using Poinsot’s construction; see for example,
[1–3]. Following the development in [5], recasting the constants
of the motion defined in Eqs. (2) and (3):

x2
3

2T=I3ð Þ þ
x2

2

2T=I2ð Þ þ
x2

1

2T=I1ð Þ ¼ 1 (5)

x2
3

H=I3ð Þ2
þ x2

2

H=I2ð Þ2
þ x2

1

H=I1ð Þ2
¼ 1 (6)

yields two ellipsoidal surfaces on which the solution evolves in
the space of the angular velocity components. The curve defined
by their intersection is the path traced by the angular velocity vec-
tor in this space. As mentioned earlier, this curve is the polhode
and it can be readily constructed directly from the IMU data as
demonstrated in the following results.

3 Results and Discussion

We open our discussion with a quantitative comparison of pre-
dicted versus measured free-flight dynamics. We compare experi-
mental and theoretical time histories of the angular velocity
components as well as their companion polhodes. We then turn
attention to a much simplified design employing solely a single,
triaxial accelerometer in lieu of a complete IMU. In so doing, we
demonstrate a new and accurate method to reconstruct the angular
velocity of a rigid body in free-flight. We accomplish this by first
presenting the measurement theory and then by comparing experi-
mental predictions of angular velocity from the accelerometer to
those obtained via the complete IMU.

3.1 Comparison of Experimental Versus Predicted Rigid
Body Rotation. As introduced in Sec. 2, the miniature wireless
IMU enables the direct sensing of rigid body rotation and thereby
the direct confirmation of classical rigid body behaviors. Figure 3
illustrates typical experimental data recorded for one trial. Figures
3(a) and 3(b) illustrate the magnitude of the acceleration of point
P and the magnitude of the angular velocity, respectively, as func-
tions of time. Three distinct phases of the motion are clearly iden-
tifiable and they are referred to as the throw, free-flight, and catch
phases. The block is spun up from rest during the throw, released
into free-flight at the transition between the throw and free-flight,

Table 1 Closed-form solution to Euler’s equation (1) as determined by the constants of the motion H and T

H2
�

2T > I2 H2
�

2T < I2 H2
�

2T ¼ I2

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1 � z2
p

k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z3 � z2
p

p�1 p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z3 � z2
p

k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1 � z2
p

p�1 p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1 � z2
p

x1 ¼ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � 2T � I3

I1ðI1 � I3Þ

s
dn p t� t0ð Þ; k½ � x1 ¼ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � 2T � I3

I1ðI1 � I3Þ

s
cn p t� t0ð Þ; k½ � x1 ¼ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T I2 � I3ð Þ
I1ðI1 � I3Þ

s
csc h p t� t0ð Þ½ �

x2 ¼ s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � 2T � I1

I2ðI2 � I1Þ

s
sn p t� t0ð Þ; k½ � x2 ¼ s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � 2T � I3

I2ðI2 � I3Þ

s
sn p t� t0ð Þ; k½ � x2 ¼ s2

ffiffiffiffiffiffi
2T

I2

r
tanh p t� t0ð Þ½ �

x3 ¼ s3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � 2T � I1

I3ðI3 � I1Þ

s
cn p t� t0ð Þ; k½ � x3 ¼ s3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � 2T � I1

I3ðI3 � I1Þ

s
dn p t� t0ð Þ; k½ � x3 ¼ s3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T I1 � I2ð Þ
I3ðI1 � I3Þ

s
csc h p t� t0ð Þ½ �
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and brought back to rest during the catch. At the start of the throw,
the angular velocity is zero and the magnitude of the acceleration
remains 1 g1 confirming that the block is at rest. Following a sub-
stantial spin up near the end of the throw, the magnitude of
the angular velocity remains near constant (approximately
1570 deg/s) during the short (0.5 s) free-flight phase. This exam-
ple trial illustrates stable rotation close to the minor axis and
therefore the block exhibits a stable precession about that axis as
discussed later in the context of Figs. 4 and 5. Also shown are the
rotational kinetic energy T and the magnitude of the angular mo-
mentum about the center of mass kH

*

kin Figs. 3(c) and 3(d),
respectively. Note that during free-flight, T decreases by only
1.2% and kH

*

k decreases by a mere 0.5% confirming the negligi-
ble influence of aerodynamic moments in the experiment.

We now turn our attention to a detailed comparison of experi-
mental and theoretical results for free-flight dynamics. Figure 4
illustrates results for rotation initiated close to the major axis
[Fig. 4(a)], the intermediate axis [Fig. 4(b)], and the minor axis
[Fig. 4(c)]. In each case, experimental (solid) and theoretical
(dashed) time histories are plotted for the three angular velocity
components as well as their vector magnitude (black). Recall that
the components x1 (blue), x2 (green), and x3 (red) are aligned
with the major, intermediate, and minor axes, respectively. The

illustrated experimental data is low-pass filtered using a 100 Hz
cut-off frequency to remove modest measurement noise. The theo-
retical results are computed from the solutions reported in Table 1
upon using the measured angular velocity at the start of free-flight
as the initial condition for the remainder of the free-flight phase.

The results of Fig. 4 clearly confirm expected free-flight behav-
iors. For rotation initiated near the major (minor) axis as illustrated
in Fig. 4(a) [Fig. 4(c)], the block rotates in a stable manner with a
large, near-steady angular velocity component about the major
(minor) axis. Moreover, the two “off-axis” components of angular
velocity remain small and exhibit small periodic oscillations. The
oscillation frequencies match those predicted by linear theory2 to
within 0.8% (8.3%) for the illustrated case of rotation about the
major (minor) axis. In contrast, for rotation initiated near the inter-
mediate axis as illustrated in Figs. 4(b), the block experiences
unstable rotation as evidenced by the large, diverging precession.

The stable and unstable rotations are elegantly described geomet-
rically upon construction of the associated polhodes as illustrated in
Fig. 5. Shown in this figure are the ellipsoids of constant rotational
kinetic energy (dark gray surface) and constant angular momentum

Fig. 3 Example time histories of the measured (a) magnitude of the acceleration
of point P, (b) magnitude of the angular velocity, (c) the rotational kinetic energy,
and (d) magnitude of angular momentum about center of mass. The throw, free-
flight, and catch phases are noted. Example trial for rotation initiated nearly about
the minor axis.

1Note that the MEMS accelerometer detects acceleration down to DC and thus it
also measures gravity.

2For example, refer to [4]. This classical analysis reveals that the “off-axis” com-
ponents of angular velocity will oscillate with frequency
xn ¼ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 � I3ð Þ I2 � I1ð Þ=I3I2

p
or xn ¼ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 � I3ð Þ I3 � I2ð Þ=I1I2

p
for rotations

about the major and minor axes, respectively, where X is the magnitude of angular
velocity component about the major or minor axis.
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magnitude (light gray surface) for the case of rotation initiated near
the major axis [Fig. 5(a)], the intermediate axis [Fig. 5(b)], and the
minor axis [Fig. 5(c)]. These ellipsoids follow from Eqs. (5) and (6)
upon using the measured angular velocity at the start of free-flight
as the initial conditions. Following [5], the intersection of the two
ellipsoids defines the curve in angular velocity space on which the
free-flight dynamics evolve. This fact is confirmed upon superim-
posing the measured angular velocity from the wireless IMU (black
curves) over the duration of the free-flight phase. For rotations initi-
ated close to either the major or the minor axis, small-amplitude
periodic precession arises and the angular velocity vector corre-
spondingly generates a stable orbit centered about the associated
principal axis; refer to Fig. 5(a) and 5(c). In contrast, for rotation
initiated near the intermediate axis, the precession describes a large
and diverging (unstable) response. These results provide clear and
direct support of the classical theory reviewed above.

We now establish the quantitative agreement between theory
and experiment. To this end, we introduce a relative error measure
for each angular velocity component xj,

erms;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

PN
i¼1

xji � ~xji

� �2

1=N
PN
i¼1

x
*

i

��� ���2

vuuuuuut (7)

This relative error represents the root mean square error between
the measured ( ~xj) and theoretical (xj) angular velocity compo-
nents normalized by the theoretical root mean square angular ve-

locity magnitude ðkx*kÞ for all (N) samples during the free-flight
phase. The theoretical angular velocity was again computed using
the solutions of Table 1 upon first introducing the initial angular
velocity measured by the IMU at the start of the free-flight phase.
This error analysis was conducted for a total of 16 trials. The trials
included two clockwise and two counterclockwise rotations about
each of the three principal axis and four additional rotations about
arbitrarily selected axes. The relative error, defined in Eq. (7), was
calculated for each angular velocity component for each trial, and
the average for all 16 trials is reported in Table 2 as a percentage.

Reflecting on the results of Table 2 and the three example trials of
Fig. 4, we now understand that the wireless IMU replicates the
expected theoretical angular velocity components to within 6% on
average for all 16 trials. This good quantitative agreement confirms
that any experimental errors introduced in the measured block inertia
(i.e., m, I1; I2; I3), in the IMU measurements (e.g., gyro bias, noise,
calibration errors, and misalignment between sense axes and the
block’s principal axes), and in the assumption of torque-free motion
(i.e., negligible aerodynamic moments) are reasonably small.

3.2 Angular Velocity Reconstructed From a Single Triaxial
Accelerometer. The data reported above was obtained using the
complete IMU including the angular rate gyros. While the angular

Fig. 4 Measured (solid) and calculated (dashed) angular velocity vector magnitude
(black) and components for rotations initiated about the (a) major, (b) intermediate,
and (c) minor axes. The blue, green, and red curves correspond to components
about the major (x1), intermediate (x2), and minor axes (x3), respectively.
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rate gyros yield highly accurate measurements of angular velocity,
they are relatively expensive compared to the embedded triaxial
accelerometer. The addition of angular rate gyros obviously cre-
ates a larger volume design. Moreover, commercial MEMS rate
gyros have limited range (e.g., typical ranges today are 6000 deg/s
and less). Thus, the restrictions incurred by rate gyro cost, size,
and measurement range may preclude their use in high-volume
commercial applications such as instrumented basketballs, soccer
balls, baseballs, golf balls, footballs, softballs, and the like. This
realization naturally leads to the question of whether it is possible
to arrive at the same accurate measurements of angular velocity
without the use of angular rate gyros for free-flight dynamics. We
present below an answer to this question beginning with the mea-
surement theory and then proceeding to the experimental
evidence.

In reference to Fig. 2, the acceleration of point P (the center of
the triaxial accelerometer) on the rigid body, can be written in
terms of the acceleration of the mass center C through

a
*

p ¼ a
*

c þ _x
* � r

*

p=c þ x
* � x

* � r
*

p=c

� �
(8)

where a
*

c denotes the acceleration of the mass center, r
*

p=c is again

the position of P relative to C, and x
*

and
_x
*

are, respectively, the
angular velocity and angular acceleration of the rigid body. The
acceleration measured by the MEMS accelerometer is the vector
sum of the acceleration of point P minus the acceleration due to
gravity [20] as given by

a
*

s ¼ a
*

p þ gK̂ (9)

where g denotes gravity and K̂ is a unit vector directed upwards.
For the case of a rigid body in free-flight, the acceleration of the
mass center is simply

a
*

c ¼ �gK̂ (10)

assuming negligible aerodynamic drag. Substitution of Eqs. (9)
and (10) into Eq. (8) yields

a
*

s ¼ _x
* � r

*

p=c þ x
* � x

* � r
*

p=c

� �
(11)

Fig. 5 Experimental demonstration of the polhode for rotations initiated close to
the (a) major, (b) intermediate, and (c) minor principal axes. The measured angular
velocity during the entire free-flight phase (black, scale in deg/s), closely follows
the polhode defined by the intersection of the ellipsoids.

Table 2 Quantitative comparison of theoretical and experimen-
tal angular velocity components. Relative root-means-square
error for each angular velocity component averaged over all 16
trials. The error measure is given by Eq. (7) and reported in this
table as a percentage.

j 1 2 3

erms;j %ð Þ 3.0 5.8 4.6
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where it is obvious that the accelerometer output depends on the
rotational dynamics of the rigid body as governed by the torque-

free form of Euler’s equations. Solving Eq. (1) for
_x
*

and substitut-
ing this result into Eq. (11) yields

a
*

s ¼ �I�1
c x

* � Icx
*

� �h i
� r

*

p=c þ x
* � x

* � r
*

p=c

� �
(12)

which explicitly demonstrates that the output of the accelerometer
alone can be used to deduce the angular velocity. Introducing the

components a
*

s ¼ as1 as2 as3½ �T and r
*

p=c ¼ r1 r2 r3½ �T into

Eq. (12) yields the component equivalent

as1

as2

as3

2
64

3
75 ¼

� x2
2 þ x2

3

� �
1� Icð Þx1x2 1þ Ibð Þx1x3

1þ Icð Þx1x2 � x2
1 þ x2

3

� �
1� Iað Þx3x2

1� Ibð Þx1x3 1þ Iað Þx3x2 � x2
1 þ x2

2

� �
2
64

3
75

r1

r2

r3

2
64

3
75

(13a)

or

a
*

s ¼ B x
*
� �

r
*

p=c (13b)

in which Ia ¼ I2� I3ð Þ=I1, Ib ¼ I3� I1ð Þ=I2, and Ic ¼ I1� I2ð Þ=I3.
Equation (13) provides three quadratic equations for solution of
the three unknown angular velocity components from the meas-
ured acceleration components of point P.

Moreover, the solution for x
*

must satisfy the two constants of
the motion given by Eqs. (2) and (3). These additional equations,
though not independent of the above result that embeds Euler’s
equations, are advantageous in the computation of x

*
. In particu-

lar, Eq. (13) with Eqs. (2) and (3) yield an overdetermined set of
five equations in the three unknowns (x1;x2;x3) enabling a ro-
bust least squares solution, provided the values of the constants of
the motion are known a priori.

To compute these constants, we first seek the initial conditions
for the angular velocity and the two constants of the motion as
represented by the set [x1 0ð Þ;x2 0ð Þ;x3 0ð Þ; 2T0;H

2
0]. To this end,

we numerically solve Eq. (13) with Eqs. (2) and (3) as a set of five
equations in these five unknowns using the measured values of
[as1 0ð Þ; as2 0ð Þ; as3 0ð Þ] at the start of the free-flight phase. This set
of nonlinear equations admits multiple solutions which is a well
documented issue; see for example [16,19,20,29,30]. The prob-
lem, illustrated by Eq. (11), is that the expression for a

*

s is quad-
ratic in x

*
which renders the sign of the angular velocity vector

Table 3 Relative root-mean-square error for angular velocity
components reconstructed using a single, triaxial accelerome-
ter as compared to those measured directly from the angular
rate gyros

j 1 2 3

erms;j %ð Þ 1.3 1.2 1.2

Fig. 6 Measured (solid) and reconstructed (dashed) angular velocity magnitude
(black) and components for rotations initiated nearly about the (a) major, (b) inter-
mediate, and (c) minor axes. The blue, green, and red curves correspond to com-
ponents about the major (x1), intermediate (x2), and minor axes (x3), respectively.
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(though not the direction) ambiguous. The sign can be readily
determined by simple observation during the experiment.

For any other time t during the free-flight phase, we compute
the least-squares solution for x

*
tð Þ from the five equations (13)

with (2) and (3). For each sample i, we seek the solution for x
*

that minimizes the cost function

Ji ¼
a
*

s;i � B x
*
� �

r
*

p=c

��� ���
PN
i¼1

a
*

s;i

�� ��.N

0
BBB@

1
CCCA

2

þ 2T0 � 2Ti

2T0

	 
2

þ
H2

0 � H
*

i

��� ���2

H2
0

0
B@

1
CA

2

(14)

where a
*

s;i is the sampled accelerometer output, and N is the total
number of samples. The solution is found numerically using the
lsqnonlin function in MATLAB

TM and angular velocity components
from the last time step as an initial guess. The lsqnonlin function
employs a trust-region method for numerical, unconstrained, non-
linear, minimization problems [31].

The components of angular velocity, as reconstructed from a sin-
gle triaxial accelerometer, reliably predict those measured by the
angular rate gyros. Evidence for this claim is presented in Fig. 6
which directly compares the reconstructed versus measured angular
velocity. Results are presented for three example trials where rota-
tion is initiated nearly about the major [Fig. 6(a)], the intermediate
[Fig. 6(b)], and the minor [Fig. 6(c)] axes. Both the angular velocity
components as well as the magnitude of the angular velocity vector
are illustrated. Inspection of these results reveals excellent agree-
ment thereby demonstrating that a single, triaxial accelerometer can
be employed to accurately reconstruct the angular velocity during
free-flight. The accuracy is summarized quantitatively in Table 3
which reports the average relative rms error3 for the 16 trials previ-
ously considered. The errors, which remain less than 2% for all
three angular velocity components, provide convincing evidence in
support of our claim.

4 Summary and Conclusions

The novel, miniature wireless MEMS IMU presented herein pro-
vides a noninvasive and highly portable means to measure the dy-
namics of a rigid body. The IMU incorporates three-axis sensing of
acceleration and three-axis sensing of angular velocity with a micro-
controller and an RF transceiver for wireless data transmission to a
host computer. The small sensor footprint (0.019� 0.024 m) and
mass (0.005 kg including battery) enables its use in rather broad
applications including; for example, human motion analysis, sports
training systems, and education/learning of rigid body dynamics.
Specific to this paper, we demonstrate how this novel sensor can be
used in laboratory or classroom settings to accurately measure the
dynamics of a rigid body in free-flight.

The experiments consider an example rigid body that is spun up
by hand and then released into free-flight. The resulting rotational
dynamics measured by the angular rate gyros are carefully bench-
marked against theoretical results from Euler’s equations. This
comparison reveals that differences between measurement and
theory remain less than 6%. Moreover, experimentally con-
structed polhodes elegantly illustrate the expected stable preces-
sion for rotations initiated close to the major or minor principal
axes and the unstable precession for rotations initiated close to the
intermediate axis.

Finally, we present a single, triaxial accelerometer as an alterna-
tive to using a full IMU for deducing the angular velocity of a rigid
body during free-flight. This simpler alternative, which addresses
restrictions incurred by rate gyro cost, size, and measurement range,
may enable high-volume commercial applications such as instru-

mented basketballs, soccer balls, baseballs, golf balls, footballs,
softballs, and the like. A measurement theory is presented for
reconstructing the angular velocity of the body during free-flight
from acceleration signals which is then validated experimentally.
The experimental results confirm that the angular velocity can be
reconstructed with small errors (less than 2%) when benchmarked
against direct measurements using angular rate gyros.
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